3.548 \(\int \frac{1}{\sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx\)

Optimal. Leaf size=175 \[ \frac{d \cos (e+f x)}{f \left (c^2-d^2\right ) \sqrt{a \sin (e+f x)+a} (c+d \sin (e+f x))}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} f (c-d)^2}+\frac{\sqrt{d} (3 c+d) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} f (c-d)^2 (c+d)^{3/2}} \]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)^2*f)) + (Sqrt[
d]*(3*c + d)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)^
2*(c + d)^(3/2)*f) + (d*Cos[e + f*x])/((c^2 - d^2)*f*Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.424737, antiderivative size = 175, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {2779, 2985, 2649, 206, 2773, 208} \[ \frac{d \cos (e+f x)}{f \left (c^2-d^2\right ) \sqrt{a \sin (e+f x)+a} (c+d \sin (e+f x))}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} f (c-d)^2}+\frac{\sqrt{d} (3 c+d) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} f (c-d)^2 (c+d)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])^2),x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)^2*f)) + (Sqrt[
d]*(3*c + d)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)^
2*(c + d)^(3/2)*f) + (d*Cos[e + f*x])/((c^2 - d^2)*f*Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x]))

Rule 2779

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> -Sim
p[(d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/
(2*b*(n + 1)*(c^2 - d^2)), Int[((c + d*Sin[e + f*x])^(n + 1)*Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e +
f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b
^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx &=\frac{d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))}+\frac{\int \frac{a (2 c+d)-a d \sin (e+f x)}{\sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx}{2 a \left (c^2-d^2\right )}\\ &=\frac{d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))}+\frac{\int \frac{1}{\sqrt{a+a \sin (e+f x)}} \, dx}{(c-d)^2}-\frac{(d (3 c+d)) \int \frac{\sqrt{a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{2 a (c-d)^2 (c+d)}\\ &=\frac{d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{(c-d)^2 f}+\frac{(d (3 c+d)) \operatorname{Subst}\left (\int \frac{1}{a c+a d-d x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{(c-d)^2 (c+d) f}\\ &=-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a+a \sin (e+f x)}}\right )}{\sqrt{a} (c-d)^2 f}+\frac{\sqrt{d} (3 c+d) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a+a \sin (e+f x)}}\right )}{\sqrt{a} (c-d)^2 (c+d)^{3/2} f}+\frac{d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))}\\ \end{align*}

Mathematica [C]  time = 3.3845, size = 324, normalized size = 1.85 \[ \frac{\left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (\frac{4 d (c-d) \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )}{(c+d) (c+d \sin (e+f x))}+\frac{\sqrt{d} (3 c+d) \left (2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (\sqrt{c+d}-\sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )+\sqrt{d} \cos \left (\frac{1}{2} (e+f x)\right )\right )\right )-2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right )\right )+e+f x\right )}{(c+d)^{3/2}}-\frac{\sqrt{d} (3 c+d) \left (2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (\sqrt{c+d}+\sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )-\sqrt{d} \cos \left (\frac{1}{2} (e+f x)\right )\right )\right )-2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right )\right )+e+f x\right )}{(c+d)^{3/2}}+(8+8 i) (-1)^{3/4} \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (e+f x)\right )-1\right )\right )\right )}{4 f (c-d)^2 \sqrt{a (\sin (e+f x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])^2),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*((8 + 8*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x
)/4])] + (Sqrt[d]*(3*c + d)*(e + f*x - 2*Log[Sec[(e + f*x)/4]^2] + 2*Log[Sec[(e + f*x)/4]^2*(Sqrt[c + d] + Sqr
t[d]*Cos[(e + f*x)/2] - Sqrt[d]*Sin[(e + f*x)/2])]))/(c + d)^(3/2) - (Sqrt[d]*(3*c + d)*(e + f*x - 2*Log[Sec[(
e + f*x)/4]^2] + 2*Log[Sec[(e + f*x)/4]^2*(Sqrt[c + d] - Sqrt[d]*Cos[(e + f*x)/2] + Sqrt[d]*Sin[(e + f*x)/2])]
))/(c + d)^(3/2) + (4*(c - d)*d*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]))/((c + d)*(c + d*Sin[e + f*x]))))/(4*(c
- d)^2*f*Sqrt[a*(1 + Sin[e + f*x])])

________________________________________________________________________________________

Maple [B]  time = 1.22, size = 453, normalized size = 2.6 \begin{align*}{\frac{1+\sin \left ( fx+e \right ) }{ \left ( c-d \right ) ^{2} \left ( c+d \right ) \left ( c+d\sin \left ( fx+e \right ) \right ) \cos \left ( fx+e \right ) f}\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) } \left ( \sin \left ( fx+e \right ) \left ( 3\,{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( fx+e \right ) }d}{\sqrt{acd+a{d}^{2}}}} \right ){a}^{7/2}c{d}^{2}+{a}^{{\frac{7}{2}}}{\it Artanh} \left ({d\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{acd+a{d}^{2}}}}} \right ){d}^{3}-\sqrt{a \left ( c+d \right ) d}\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{a}}}} \right ){a}^{3}cd-\sqrt{a \left ( c+d \right ) d}\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{a}}}} \right ){a}^{3}{d}^{2} \right ) +3\,{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( fx+e \right ) }d}{\sqrt{acd+a{d}^{2}}}} \right ){a}^{7/2}{c}^{2}d+{\it Artanh} \left ({d\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{acd+a{d}^{2}}}}} \right ){a}^{{\frac{7}{2}}}c{d}^{2}+\sqrt{a-a\sin \left ( fx+e \right ) }\sqrt{a \left ( c+d \right ) d}{a}^{{\frac{5}{2}}}cd-\sqrt{a-a\sin \left ( fx+e \right ) }\sqrt{a \left ( c+d \right ) d}{a}^{{\frac{5}{2}}}{d}^{2}-\sqrt{a \left ( c+d \right ) d}\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{a}}}} \right ){a}^{3}{c}^{2}-\sqrt{a \left ( c+d \right ) d}\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{a}}}} \right ){a}^{3}cd \right ){a}^{-{\frac{7}{2}}}{\frac{1}{\sqrt{a \left ( c+d \right ) d}}}{\frac{1}{\sqrt{a+a\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x)

[Out]

(1+sin(f*x+e))*(-a*(-1+sin(f*x+e)))^(1/2)/a^(7/2)*(sin(f*x+e)*(3*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2
)^(1/2))*a^(7/2)*c*d^2+a^(7/2)*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*d^3-(a*(c+d)*d)^(1/2)*2^(
1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a^3*c*d-(a*(c+d)*d)^(1/2)*2^(1/2)*arctanh(1/2*(a-a*si
n(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a^3*d^2)+3*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^(7/2)*c^2*
d+arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^(7/2)*c*d^2+(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)
*a^(5/2)*c*d-(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a^(5/2)*d^2-(a*(c+d)*d)^(1/2)*2^(1/2)*arctanh(1/2*(a-a*s
in(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a^3*c^2-(a*(c+d)*d)^(1/2)*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)
/a^(1/2))*a^3*c*d)/(c-d)^2/(c+d)/(c+d*sin(f*x+e))/(a*(c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 4.34319, size = 3519, normalized size = 20.11 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

[-1/4*((3*a*c^2 + 4*a*c*d + a*d^2 - (3*a*c*d + a*d^2)*cos(f*x + e)^2 + (3*a*c^2 + a*c*d)*cos(f*x + e) + (3*a*c
^2 + 4*a*c*d + a*d^2 + (3*a*c*d + a*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(d/(a*c + a*d))*log((d^2*cos(f*x + e)
^3 - (6*c*d + 7*d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 + 4*((c*d + d^2)*cos(f*x + e)^2 - c^2 - 4*c*d - 3*d^2
- (c^2 + 3*c*d + 2*d^2)*cos(f*x + e) + (c^2 + 4*c*d + 3*d^2 + (c*d + d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*s
in(f*x + e) + a)*sqrt(d/(a*c + a*d)) - (c^2 + 8*c*d + 9*d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - c^2 - 2*c*d
- d^2 + 2*(3*c*d + 4*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2
 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(
f*x + e))) + 2*sqrt(2)*(a*c^2 + 2*a*c*d + a*d^2 - (a*c*d + a*d^2)*cos(f*x + e)^2 + (a*c^2 + a*c*d)*cos(f*x + e
) + (a*c^2 + 2*a*c*d + a*d^2 + (a*c*d + a*d^2)*cos(f*x + e))*sin(f*x + e))*log(-(cos(f*x + e)^2 - (cos(f*x + e
) - 2)*sin(f*x + e) - 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x
 + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a) + 4*(c*d - d^2 + (c*
d - d^2)*cos(f*x + e) - (c*d - d^2)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/((a*c^3*d - a*c^2*d^2 - a*c*d^3 +
a*d^4)*f*cos(f*x + e)^2 - (a*c^4 - a*c^3*d - a*c^2*d^2 + a*c*d^3)*f*cos(f*x + e) - (a*c^4 - 2*a*c^2*d^2 + a*d^
4)*f - ((a*c^3*d - a*c^2*d^2 - a*c*d^3 + a*d^4)*f*cos(f*x + e) + (a*c^4 - 2*a*c^2*d^2 + a*d^4)*f)*sin(f*x + e)
), -1/2*((3*a*c^2 + 4*a*c*d + a*d^2 - (3*a*c*d + a*d^2)*cos(f*x + e)^2 + (3*a*c^2 + a*c*d)*cos(f*x + e) + (3*a
*c^2 + 4*a*c*d + a*d^2 + (3*a*c*d + a*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(-d/(a*c + a*d))*arctan(1/2*sqrt(a*
sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-d/(a*c + a*d))/(d*cos(f*x + e))) + sqrt(2)*(a*c^2 + 2*a*c*d
 + a*d^2 - (a*c*d + a*d^2)*cos(f*x + e)^2 + (a*c^2 + a*c*d)*cos(f*x + e) + (a*c^2 + 2*a*c*d + a*d^2 + (a*c*d +
 a*d^2)*cos(f*x + e))*sin(f*x + e))*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) - 2*sqrt(2)*sqrt(a*
sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x +
 e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a) + 2*(c*d - d^2 + (c*d - d^2)*cos(f*x + e) - (c*d - d^2)*sin
(f*x + e))*sqrt(a*sin(f*x + e) + a))/((a*c^3*d - a*c^2*d^2 - a*c*d^3 + a*d^4)*f*cos(f*x + e)^2 - (a*c^4 - a*c^
3*d - a*c^2*d^2 + a*c*d^3)*f*cos(f*x + e) - (a*c^4 - 2*a*c^2*d^2 + a*d^4)*f - ((a*c^3*d - a*c^2*d^2 - a*c*d^3
+ a*d^4)*f*cos(f*x + e) + (a*c^4 - 2*a*c^2*d^2 + a*d^4)*f)*sin(f*x + e))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="giac")

[Out]

Timed out